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SECTION 1 

INTRODUCTION 

Active detection and tracking of underwater targets 
requires knowledge of how they reflect sound waves.  For this 
reason, the Navy has a continuing interest in acoustic 
scattering.  Acoustic or sound wave scattering refers to the 
way a pressure wave bounces off obstacles in its path.  We 
consider a source, a scatterer, and a receiver which monitor 
the direct signal and the signal scattered from the obstacle. 
There are two types of scattering depending on where the 
sound waves are observed.  If the source and the observation 
points are one and the same, the problem is one of monostatic 
scattering.  Radars (in the electromagnetic case) and active 
sonars usually operate this way.  When the source and the 
observation points are not coincident, we call it bistatic 
scattering (see Figure 1).  Monostatic scattering is simply a 
special case of the bistatic problem.  When the target lies 
close to the line joining the source and the observation 
points, the prob! ~ is one of forward scattering.  In this 
report we will c^.'.sider the general case of bistatic 
scattering and in certain sections emphasize forward 
scattering. 

Unlike electromagnetic waves, the acoustic pressure 
waves are scalar and their study is somewhat simpler than 
that of their electromagnetic counterpart.  The exact 
solution to the problem of scattering of a scalar wave from a 
sphere was obtained as early as 1863 by Clebsch. By 1890, the 
scattering from ellipsoids was solved as well.  These shapes 
were tractable because they are amenable to the technique of 
separation of variables which involves using a coordinate 
frame where the field can be expressed as a product of 
functions that depend on individual coordinates.  However, no 
other bounded shape allows the use of this technique.  All 
subsequent solution techniques rely on approximations and 
series expansions of various kinds. 

The approximations are based on the interrelationship of 
the parameters of the scattering problem:  the wavelength of 
the sound wave, the maximum physical dimension of the 
scatterer and the distances of the source and observation 
points from the scatterer.  Typically, the source and 
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observation points are assumed to be located far (compared to 
the wavelength) from the scatterer. 

We will next describe the experimental setup used to 
obtain the measurements of scattered field.  We will then 
explain the validation of the measurements by using the 
sphere as an example.  We will also present theoretical as 
well as measured results for scattering from several 
interesting bodies. 

The theoretical derivations appear in two appendices. 
In Appendix A, we derive the exact solution to the problem of 
acoustic scattering from a liquid sphere.  Appendix B 
contains the derivation of Kirchhoff approximation applied to 
bistatic scattering of scalar waves.  Using the sphere as an 
example, we have elaborated the conditions under which the 
Kirchhoff approximation holds well. 
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SECTION 2 

EXPERIMENTAL SETUP 

The experiment was conducted in the Naval Surface 
Warfare Center (NSWC) Hydroacoustic Facility which uses a 
tank 20-feet deep and 30-feet in diameter.  The source, 
scatterer, and receiver were placed at a depth of 10 feet. 
Two E27 transducers were used as the source and the receiver. 
The actual geometry of the experiment is shown in Figure 2. 
The source emits a long pulse with a duration of 1 to 2 msec, 
i.e., 5 to 10 feet in length.  A time gate was used to 
observe both direct and scattered pulses.  This, in effect, 
gives a continuous wave system but without reflections from 
the walls of the tank. 

The experiment was done on two styrofoam objects: a 
frustum of a cone with its axis oriented vertically and a 
sphere.  The styrofoam sphere was 4 inches in diameter.  The 
frustum of the cone was 6-inches high, with diameters of 0.75 
inch at one end and 2.5 inches at the other.  The 
measurements were made at two frequencies: 50 kHz and 125 
kHz. 

Validation of Measurements 

The experiment was validated by comparing the 
measurements for scattering from the soft styrofoam sphere 
with the exact solution for this problem.  As shown in 
Figures 3 and 4, the experimental results match well with the 
theoretical values. 

3/4 
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SECTION 3 

RESULTS 

The measurements' from the NSWC Hydroacoustic Facility, 
shown in Figures 3, 4, and 6, display the total received 
power (in dB) in a polar plot.  The total received power is 
the magnitude of the complex sum of the direct and scattered 
waves at the receiver.  In the polar plots, the angle 
corresponds to the angular location of the receiver relative 
to the line joining the source and the scatterer. 

Figure 3 shows the scattering at 50 kHz from a styrofoam 
sphere with a diameter of 4 inches. Figure 4 shows 
measurements for the same sphere at 125 kHz.  At 125 kHz, the 
transducer generates a very narrow beam so the pattern drops 
off rapidly as we move out of the -30° to +30° zone in 
azimuth.  However, within this zone the experimental results 
agree well with the theory.  Figure 5 displays the predicted 
results for the sphere from both the exact solution and the 
Kirchhhoff approximation.  Note that the discrepancy in the 
forward direction is exaggerated because of an approximation 
we used when evaluating the field predicted by the Kirchhoff 
approach. 

Figures 6 and 7, respectively, show measurements from 
the frustum of a cone and the values predicted by the 
Kirchhoff approximation.  The computation of the field 
predicted by the Kirchhoff approximation was handled properly 
in this case.  Hence, the discrepancy is reduced in the 
forward direction between the measured and predicted fields. 

The next two figures show polar plots for calculated 
bistatic scattering from spheres of radii 2 and 4 
wavelengths.  Figure 8 is for soft spheres and Figure 9 for 
rigid spheres.  Figures 10 and 11 show calculated bistatic 
scattering from liquid spheres containing a fluid whose 
density is the same as that of the fluid outside.  In Figure 
10, the speed of sound inside the sphere is slightly less 
than that in the surrounding medium.  In Figure 11, the 
density as well as the speed of sound are the same inside and 
out, but the interior fluid has a small loss (a black 
sphere). 
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Figure 12 shows the calculated results of bistatic 
scattering from a cylinder with hemispherical end caps as 
calculated by the Kirchhoff method.  The cylinder is 12- 
wavelengths long by 2- wavelengths in diameter.  The 
concentric circles represent lOdb steps.  Tht forward peak is 
normalized with respect to the outer circle.  Note that the 
specular reflection (at 30°) is about lOdb down from the 
forward scattered power.  Calculations were also made for 
bistatic scattering from cylindrical and spherical metal 
shells.   It is well known that these structures show 
resonances in the backscattered amplitude.  However, these 
resonances are much less pronounced in the forward scattered 
field.  In fact, the forward scatter for spheres and 
cylinders with thin shells is very similar to that for a soft 
scatterer.  Figure 13 shows the calculated results of 
scattering from a spherical shell of aluminum with thickness 
0.01 times the radius at the resonant frequecy.  On the same 
figure, we also show the scattering from a soft sphere to 
emphasize the similarity in forward scatter from the two 
scatterers. Figures 14 and 15 displays the calculated results 
for the same problem at frequencies 10 percent higher and 10 
percent lower than the resonant frequency.  Figure 16 shows 
the backscatter amplitude versus frequency for the same 
spherical shell of aluminum. 
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SECTION 4 

CONCLUSIONS 

In this report, we described the use of the Kirchhoff 
approximation technique to solve for the forward acoustic 
scattering from several shapes.  We found that regardless of 
the composition of the scatterer, soft, rigid, or resonant 
shell, there is always a strong forward scatter signal.  In 
the ±30°azimuthal zone, the shape of this forward scatter 
pattern can be computed, with good accuracy, by using the 
Kirchhoff approximation to solve the Helmholtz integral 
equation subject to the appropriate boundary conditions.  We 
also found that the backward scattering can be reduced at 
some frequencies; however, the forward scatter energy also 
exists at all frequency. 

7/8 
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Source 
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1 Monostatic 

FIGURE 1. BISTATIC. MONOSTATIC. AND FORWARD SCATTERING 
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PATH OF RECEIVER 

SCATTERER TO RECEIVER-37 INCHES 

SOURCE •- 

SOURCE TO SCATTERER-120 INCHES 

FIGURE 2. GEOMETRYOF THE EXPERIMENT 

FIGURE 3. MEASUREMENT OF SCATTERING FROM 
A SPHERE AT 50HZ 

FIGURE 4. MEASUREMENT OF SCATTERING FROM 
ASPHEREAT125HZ 

FIGURE 5.  PREDICETED MEASUREMENT FROM THE KIRCHHOFF APPROXIMATION AND FROM 
THE EXACT SOLUTION FOR THE SPHERE AT 50HZ 

10 
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FIGURE 6. MEASUREMENT OF SCATTERING FROM 
ACONEAT50HZ 

FIGURE 7.  PREDICATED MEASUREMENT FROM THE 
KIRCHHOFF APPROXIMATION FOR THE 
CONE AT 50HZ 

FIGURE 8. EXACT SOLUTION FOR SOFT SPHERES OF FIGURE 9. EXACT SOLUTION FOR RIGID SPHERES OF 
RADII 2 A AND 4 A RADII 2A AND 4A 

FIGURE 10. EXACT SOLUTION FOR LIQUID SPHERES 
OF RADII 2Ä AND 4 A WITH A SMALL 
IMPEDANCE MISMATCH 

FIGURE11. EXACT SOLUTION FOR LOSSY SPHERES 
OF RADII 2A AND 4 A 

11 
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FIGURE 12. SCATTERING FROM A CYLINDER WITH 
HEMISPHERICAL END CAPS BY THE 
KIRCHHOFF METHOD 

FIGURE 13. SCATTERING FROM A SOFT SPHERE AND 
A SPHERICAL SHELL OF ALUMINUM AT 
RESONANT FREQUECY 

FIGURE 14. SCATTERING FROM A SOFT SPHERE AND A 
SPHERICAL SHELL OF ALUMINUM AT 
FREQUENCY 10% HIGHER THAN ITS 
RESONANT FREQUENCY 

FIGURE 15. SCATTERING FROM A SOFT SPHERE AND 
A SPHERICAL SHELL OF ALUMINUM AT 
FREQUENCY 10% LOWER THAN ITS 
RESONANT FREQUENCY 

12 
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1.31 
D/A 

FIGURE 16. BACK SCATTER AMPLITUDE VERSUS 
FREQUENCY FOR THE SPHERICAL SHELL 

13/14 
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APPENDIX A 

EXACT SOLUTION FOR SCATTERING FROM A LIQUID SPHERE 

Consider a plane wave propagating along the z-axis. 

Suppose this wave impinges on a liquid sphere of radius a at 
the origin.  Let the point of observation be at (K,8)in 

spherical coordinates. Let \J/, \|/j and V|/s be the total field, 

the incident field and the scattered field, respectively. 

Thus, we have 

V = ¥i + VS 

Since the incident plane wave is propagating along the 

z-axis, we get (see Reference A-l) 

„, _ „ikz . Oikrcos9 V I - e     e 

oo 

" Zanjn(kr)Pn(cosCc) (A-l) 
n=0 

-\ r*~ i jn(x) = \2x"Jq(x), q = n+J, where jn(x) = \/ö7Jn(x'' 9 = n+T'   Jq(x) is the Bessel 

function, and Pn(cos(X) is the Legendre polynomial. 

A-l 
Stratton, J. A., Electromagnetic Theory. McGraw-Hill Book Co., 
Inc., New York, NY, 1941, pp. 408-409. 

A-l 
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Multiplying both sides of Equation (A-l) by P^(cosa)sina 

and integrating with respect to a , we get 

rr^- aiji(kr)  -  le
ikrcosa PA (cosa) sina da      (A-2) 

If we let x 5 kr , we can show that 

rdnjn(xn     2n (n!)2 

I  dxn  Jx=0   <2n +1) ! 

and hence, 

2n (n!)2 

- "1}, an =  -^  in jcosna Pn(cosa)sina da    (A-3) (2n +1) 

71 

Let In • jcosr'a Pn (cosa) sina da. Then, integrating in 
0 

by parts, we get 

nln = -<n + l)In + nljj.! 

T n   T 

Substituting the value of I« ,1^   ,I2 ..., and using 

induction we get 

2n+1(n!)2 

n •    (2n +1) ! 

Therefore, 

an = (2n+l)i
n 

A-2 
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Vi = Xin(2n+l)jn(kr)Pn(cosCC) (A"4) 
n=0 

Since the scattered field outside the sphere consists of 

outgoing waves at distances far from the sphere, we write 

VS " Z
cnhn(1) (kr)Pn(cosa) (A-5) 

n=0 

where hn
(1) = jn+ iyn  Inside the sphere, the field is 

V =Vs =£bnjn(kr)Pn(cosa) 
n=0 

At the boundary of the sphere, the pressure inside must 

be equal to the pressure outside.  Therefore, 

X [in(2n+l) JnOcaJ + Cnh^1* (ka) ] Pn(cosOO 
n=0 

oo 

=  Xbn^n(ka)pn(cosCX) (A-6) 
n=0 

or, 
[in(2n+l) jn(ka))+cnhn<

1> (ka) ] = bnjn (ka) (A-7) 

Let Pi and k^ respectively, be the density and the 

propagation constant inside the sphere.  Let p£ and k-2  be the 

corresponding quantities outside the sphere. Let V(r) *1' and 

V(r)*2), respectively, be the radial velocities inside and 

outside the sphere.  Applying the boundary conditions for the 

radial velocities, we obtain 

A-3 
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V(a) (1)   = V(a) (2)     and V(r)   = -*— r^- 
icop or 

Hence, 

Jti k2 
_L bnjn' (ka)   = —  [in(2n+l) jn' (ka))+ cnhn

(1> ' (ka) ] 
Pi P2 

or, 

in(2n+l)[z1j'n(x1)jn(x2)-z2jn(x1)j'ri(x2)] 
cn  • z23n<*l>h,n<*2>-zi:iVxi)hn(x2) {        ' 

where z-^ = k^p2, z2 = k2p^, x^ - k-j_a, and x2 = k2a.  Note 

that the propagation constant need not be real inside the 
sphere. When the propagation constant, k-j, is complex, we say 

that the sphere is lossy. 

For a soft sphere, p2 = 1 and p1 = 0.  In this case, we 

get 

Jn<x2> 
cn = -i»(2n+l) T^T- <A"9> 

P2 For a rigid sphere,   —> 0. In this case, 
Pi 

V(x2> 
Cn   =  in<2n+1>    hn'(x2)   • (A"10> 

A-4 
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APPENDIX B 

THE KIRCHHOFF SCATTERING APPROXIMATION 

In this section we will apply the Kirchhoff 

approximation to acoustic scattering.  First, we will derive 

the integral form of the wave equation by using the 

divergence theorem.  Then we will show how to obtain an 

approximate solution of the integral equation by using the 

Kirchhoff approximation. 

The divergence theorem states that 

jf dvV.£ = J daJL.n (B-l) 
v s 

provided £.   has no singularies within v.  Here, V is the 

divergence of a vector and n is the outward normal to the 

surface. 

Now consider a system with a unity source at a» a 

scattere r bounded by surface Ss, and a point of observation 

X-  The source may be described by 

ei klx _ Al 

JL- A.I 

We wish to find <J>(r.) where V^<j) + k2<|> - 0 and appropriate 

boundary conditions are satisfie 

B-] 

d on Ss. 
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eiklx' _ x± 
Let us define an auxilary function G • ;  

\XL- 2L\ 
and f. • GV(p - (pVG.   Note  that  G  satisfies  the  wave  equation 

except  at   r'   =  r. 

We  will  now apply  the  divergence  theorem on  f_ 

V.f_ =  VG.Vcp +   GV2(p - Vcp.VG   -  (pV2G (B-2) 

=   -k2G(p + k2G(p =0 

Therefore, 

J dvV.f. = 0 =    j   daf_.n (B-3) 

Since V must be a volume free of singularities, we must 

exclude the singularities at the source position a. and the 

observation position j_ from the volume.  Let V be the 

interior to surface Soo, a sphere whose radius is indefinitely 

large and exterior to Ss, Sa , Sr, where Sa and Sr are 

spheres of indefinitely small radius, centered at the source 

__ and the observation point £__ respectively. 

Then from Equation (B-3), we get 

j daf_.n+  j daf_.iL +  j daf_.n +  J daf .a = 0     (B-4) 
s|        sa        sr        ss 

i.IL = GV<p. n - <pVG. a = Gr— - $T~ (B~5) 
on    on 

Over the spheres Sa and Sr the positive normal is directed 

radially towards the center, or, out of the volume V. 

Therefore 

B-2 
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3n 
3<t> 

Hence, 

i.n_ = - 
iklx'   - JJ. 3(j> 

x_- x_l ~   • *~ { 

.iklx'   - x± 
3L- X_ 

(B-6) 

Now  consider 

daf_.n  =    - 
IxNil 3r '   3n   *       Ix'-tl 

(B-7) 

where G and "^   are bounded over Sa, and (J) is the sum of 

the scattered field and the source field.  The scattered 

1    ^0 field is also bounded.  The source is of the order — and T— 

1 9 
is of the order —r  . The surface area of Sa is 47tr^ .  As r, 

the radius of Sa, is allowed to vanish, the contribution of 

the sphere to right hand side of Equation (B-7) is 

r                             ,     eikl-r- -  ai-      i               eikl-r- - Ski 
i   daf_.n  =    47tr^           -s- «  4ä   

°a 
r->0 

I x_- a_ x_ - a_| 

f d<> 
Similarly with  , da£.n., 0 and T- are bounded over Sr.  G i; 

s ör 
s>r 

i    3G i 
of the order ~  and "5   is of the order —r  .     Hence, 

r     dn r2 

B-3 
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I   daf_.n  = -47t<j> (r) 
sr 

On Soo, let the radius P —»°o.  The area of Soo is 4nRz   , 

9<J)    3G 
GT— and tiPZ      can be written as 
dn      on 

3n   r^   rJ 
oG     a      n 

<)rän" = 72  +  r3 + 

Hence, 

J daf..n —» 0 as R —»00 

Thus, collecting terms, we obtain 

f eikli - al r 
i  daf_.n   =  0  =     47r     - 47t<j> (r_)   +      I   dajL.n 

x. - a. I J 

s<x>+sr + sa + ss ss 

(B-8) 

,ik |£  -   fiLi 
4> (x)   =    —; ;—    + —     J   daf_.n (B-9) 

I X. - A.I 471      J 
ss 

Here fl is the inward normal.  If we replace this with the 

usual outward normal, we get 

B-4 
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0 (X) = 
.ik lr _ Al 

L.- a.I 

l 

4K 

•    30 
daGT— 

on 

3G 
(B-10) 

This is referred to as Helmholtz's second theorem.  While 

formally correct, it is an integral equation for 0 and not 

useful for computation without certain approximations. 

The Kirchhoff approximation to the Helmholtz integral 

assumes that the radius of curvature at every point on the 

surface is large compared to the wavelength.  The scatterer 

itself can be either soft or rigid.  To apply the Kirchhoff 

approximation, we have to derive the boundary conditions for 
30 

0 and T— when the radius of curvature of the surface 
on 

becomes large compared to the wavelength.  This is the same 

as the boundary conditions for scattering from the half 

plane.  We derive these boundary conditions next. 

Let 0j ,0R and 0T be the incident, reflected and 

transmitted fields (see Figure B-l), respectively, given by 

A m  eik^(xcos0 + ysinG) 

A    = oceik1(-xcos0 + ysinG) 

0 = ßeik2(xcosTi + ysinrj) 

At x = 0 we have 

0T + 0R = 0„ (B-ll) 

Hence, 

<l+a)eiklysine = ße
ik2ysinrl 

B-5 



NSWC TR 88-142 

or, 

ß = (1+a)   and k^inö = k2sinT| 

The velocity also has to match at the boundary,x=0, thus, 

1       d4>T 1       d<> 1       °S»i_ 1       "VR 301 

i(op2   dx      iö>Pl    &x iwPl    dx (B-12) 

--1 =   ißk2cosTleik2ysinTl 
OX (B-13) 

3(}> I d<>R 
-r~ «   ikiccs9(l-a)eikiysine 

ox ax (B-14) 

Combining Equations (B-ll), (B-12), and (B-13), we get 

^ cos0(l-a)eikiysine = & ßcosTie11^'51^ 
Pi P2 

or, 

-m e- £ rei 

. AW (to 

cos6 

COST] 
(1-a) 

cosG 
2> \p2j Vk2

2-k1
2sin26 

d-a) 

or, 

p2k1cos8-p1Vk2
2-k1

2sin2e 

p2k1cos6+p1Vk22-k1
2sin29 
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At x =• 0, 4>T = (l+axjjj. Since 

for soft scatterer, p2 —* 0, a —»-1, and 

for rigid scatterer, p2 —> °°, OC —* 1. 

Hence, 

<[>T = 0 for an infinitely soft scatterer, and 

0T = 2 <|>j for an infinitely rigid scatterer. 

36T        86 T 
At x - 0 , -r-4- = (1-a) -r-*- 

on on 

Hence, 

Bfyrn 3<J>J 
TT*" = 2 "T— for soft scatterer 
on on 

•sr*- = 0 for rigid scatterer 
on 

These boundary conditions, when used on the Helmholtz 

equation, constitute the Kirchhoff approximation. 
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T 

FIGURE B-1. INCIDENT. REFLECTED AND TRANSMITTED WAVES IN SCATTERING 
FROM A HALF-PLANE 
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